TDA Progress Report 42-106 August 15, 1991

Testing Interconnected VLSI Circuits in the
Big Viterbi Decoder

I. M. Onyszchuk
Communications Systems Research Section

The Big Viterbi Decoder (BVD) is a powerful new error-correcting hardware
device for the Deep Space Network (DSN), in support of the Galileo and CRAF/
Cassini missions. Recently, a prototype was completed and run successfully at
400,000 or more decoded bits per second. This prototype is a complex digital system
whose core arithmetic unit consists of 256 identical very large scale integration
(VLSI) gate-array chips, 16 on each of 16 identical boards which are connected
through a 28-layer, printed-circuit backplane using 4416 wires. Special techniques
were developed for debugging, testing, and locating faults inside individual chips,
on boards, and within the entire decoder. The methods are based upon hierarchical
structure in the decoder, and require that chips or boards be wired themselves as
Viterbi decoders. The basic procedure consists of sending a small set of known,
very noisy channel symbols though a decoder, and matching observables against
values computed by a software simulation. Also, tests were devised for finding open
and short-circuited wires which connect VLSI chips on the boards and through the
backplane.

A new “single-board” BVD is being constructed now for implementation in DSN
stations. The design is based upon a new VLSI chip which contains 65,536 bits
of static RAM and circuitry now located on boards and in 4 gate arrays. Sixty-
four of these new chips will be mounted on a single board and interconnected with
5120 wires. Experience gained from the prototype actually led to special circuitry
designed inside the chips for simpler and better checking of these wires. Further-
more, each chip also operates independently as a complete, constraint length 9,
rate 1/6—(9,1/6) Viterbi decoder, for testing within the single-board BVD. Like
the prototype BVD, the new decoder can also be programmed to decode convo-
lutional codes having constraint length 2 to 15 and rate 1/2, 1/3, 1/4, 1/5, or

1/6.

175



I. Introduction

A Viterbi decoder is a probabilistic device which may
be ultimately verified by measuring bit error rates over
a range of channel noise levels [3]. However, such a test
requires considerable work for a simple pass/fail result,
and no information about the source of error is obtained
when the decoder fails. Therefore, other techniques were
required to test the Big Viterbi Decoder (BVD), and to
pinpoint sources of error when the decoder stops work-
ing. It was discovered that running the decoder with a
small number of known, very noisy channel symbols was
extremely effective for testing and isolating faults within
the BVD. Furthermore, the modular construction of the
BVD enabled independent checking of individual chips and
boards as smaller Viterbi decoders prior to their installa-

tion 1n the BVD.

The problems addressed in this article are testing, fault
location inside, and debugging of the BVD. The problems
also include checking of “metric connections”—not con-
trol signals—between very large scale integration (VLSI)
chips. A connection is defined as a chip output driver,
the “metric” wire it drives to another chip, and the corre-
sponding input driver on the other chip. There are 4416
such connections in the prototype BVD. Unique software
programs were required to verify connections on boards
and in backplanes. These procedures were used to debug
the BVD prototype and are now part of the system soft-
ware.

The basic idea is to connect one or more chips in or-
der to implement the arithmetic core of a parallel Viterbi
decoder. The hierarchical decomposition of the (15,1/6)
BVD into identical sub-blocks [2] makes this approach pos-
sible. For example, one gate array may be wired as the
arithmetic part of a (7,1/6) decoder. Similarly, each of
the 16 boards in the prototype BVD, which contain 16
gate arrays, may be tested independently as the core of a
(11,1/6) decoder. Thus, chips and boards may themselves
be individually and effectively tested as smaller Viterbi
decoders before they are integrated into the BVD.

This article is organized as follows. Basic arithmetic
processors called “butterflies,” and their interconnection in
the BVD, are described in Section I1. Procedures for test-
ing the VLSI chips are explained in Section I11. Techniques
are described in Section IV for locating short-circuited and
open-circuited metric wires on boards and in the back-
plane. The single-board BVD is described in Section V.
Based upon experience with the 16-board prototype, a
plan is outlined for independently testing new VLSI chips
and connections in the single-board BVD.

176

Il. Butterflies

The fundamental arithmetic unit in the BVD, a “but-
terfly,” is described in this section from a purely opera-
tional viewpoint. The following explanation should be suf-
ficient for understanding the remainder of this article. The
basic theory underlying the use of butterflies in Viterbi de-
coders appears in previous articles [1,2].

The “butterfly” shown below is the basic arithmetic

unit in the BVD [1,2]:

Previous Label ACS number
ACS XXXXXX (encoder state)
10 0:
11 17

B = 2%-2 butterflies may be connected to form the arith-
metic core of a parallel, rate 1/n, constraint-length K,
Viterbi decoder [2]. For example, 32 butterflies are wired
in Fig. 3 to form the arithmetic part of a K = 7 decoder.
Each butterfly in the decoder is identified by a number, 1,
in the range 0 to B—1 inclusive. Butterfly ¢ has two proces-
sors, called Add-Compare-Select (ACS) units for reasons
that will become evident when the ACS function is de-
scribed later. The ACS units are marked 0¢ and 17 for the
encoder states to which they correspond [1]. An ACS unit
in the decoder and the corresponding encoder state will
be referred to interchangeably. After the hardware com-
prising a butterfly is reset, but before the butterfly starts
operating, a 6-bit “label” is loaded into a register inside
the butterfly. This label is computed using the butterfly’s
number (i) and 6 encoder generator polynomials [1]. If
the code has less than 6 generator polynomials, because
the code rate is not 1/6, then zero polynomials are added.

A decoder cycle will denote the basic unit of processing
time for a Viterbi decoder. During each decoder cycle, but-
terfly ¢ receives two 16-bit numbers, called state metrics,
bit-serially (least significant bit first): one from the output
of ACS 0 in butterfly 2/ (mod B) and the other from ACS
il in butterfly 2 + 1 (mod B). The state metrics, stored
inside ACS units, are all set to a common value such as
0 when the butterflies are reset. During each decoder cy-
cle, all butterflies also receive a common set of six 8&-bit
quantized, demodulated channel symbols. These are used
with the label inside each butterfly to compute a number
(branch metric) for each of the 4 branches. Now for each of
the two incoming branches, each ACS unit adds the branch



metrics to the corresponding state metric. Each ACS unit
keeps only the smaller of the two resulting numbers, for
transmission as a state metric input to a butterfly during
the next decoder cycle, and writes into a random-access
memory (RAM) the least significant bit of the ACS/state
whose metric led to the smallest number. The bits written
to RAM are called traceback bits because during later de-
coder cycles, a process traces backwards through the RAM
to extract the decoded bits to be output by the Viterbi de-
coder. During every decoder cycle, each one of the 2B ACS
units writes a 0 or 1 into a particular location in traceback
memory (Fig. 1). The location is indexed by two num-
bers: a state number which is the ACS unit number, and
a column number which is the same for all ACS units and
depends only on the decoder cycle. After each decoder
cycle, one column of traceback RAM is written. Start-
ing from reset, colurmns 0 to 509 are written sequentially,
but, thereafter, a column is overwritten immediately after
a traceback process has used it.

In this article, “testing” a chip, board, or decoder
means verifying that no manufacturing or assembly defects
exist. “Fault isolation” means precisely locating sources of
error when the hardware stops operating correctly. “De-
bugging” means finding and fixing errors in logic design
and timing. Techniques based upon software simulations
using known channel symbols, corresponding to an infor-
mation bit signal-to-noise ratio E3/Np of 0 dB, were in-
strumental during all phases of BVD testing, debugging,
and fault isolation.

For purposes of testing a butterfly, the controllables
are a 6-bit label which is loaded once after reset, and
then groups of six 8-bit symbols. The only observables
are traceback bits written from the butterflies into RAM.
However, during the debugging of chips and boards, a logic
analyzer was required to observe state metrics.

lll. Testing VLSI Chips

Before encapsulation inside packages with pins, VLSI
chips are tested by applying a sequence of binary patterns
called “test vectors” to input pads during successive clock
cycles. The test vectors are designed to exercise all cir-
cuitry inside the chip and expose any faults created during
fabrication. The resulting vectors of bits at chip output
pads are compared with expected, correct vectors obtained
from a software simulation, like one used to verify logic and
timing within the chip. Two different VLSI chips were de-
signed for the BV D: a semi-custom, military-specified chip
containing 16 identical butterflies, circuitry for processing
control signals, and circuits for organizing traceback bits
before they are written to memory; and a commercial gate

array which implements two semi-custom chips, for a total
of 32 butterflies.

The first VLSI testing for the BVD involved the semi-
custom chips. Every flip-flop inside these chips, except
those in the middle of serial registers, has a two-input
multiplexor at the data input. All of these multiplexors
are controlled by a common TEST signal. When TEST
is active, each multiplexor selects the output of another
flip-flop, instead of a combinational circuit output as it
would during normal operating mode. Thus, all flip-flops
inside the chip may be chained together in order to load
or read bit patterns. In order to test a chip, the procedure
described below is repeated once for each pattern in a very
carefully designed set.

A pattern is loaded bit-serially into flip-flops while the
TEST signal is active. The chip is then clocked for one or
more cycles while TEST is inactive. Next, the contents of
all flip-flops are read out as a serial bit stream while TEST
is active, and compared with a known correct pattern in
order to detect faults. The total number of clock cycles
needed for each bit pattern is a few more than twice the
number of flip-flops in the chip. However, the number of
test vectors required to implement all bit patterns in the
designed set can be very large, particularly if there is only
one serial chain path which connects all flip-flops in the
chip, instead of many parallel chains—for example, one
for each butterfly. There is only one serial chain path in
the semi-custom chips, and it joins all 1776 flip-flops in
the chip. Furthermore, the chip requires two clock cycles
per test vector. Hence, at least 7106 test vectors are re-
quired for each bit pattern. However, integrated circuit
test equipment for both the semi-custom and gate array
BVD chips could process at most 16,384 different test vec-
tors. Furthermore, any testing of chips individually will
not expose potential problems when several identical chips
are wired together. When 512 semi-custom chips are in-
stalled in the BVD, fault isolation using bit patterns which
are serially loaded and unloaded may take a long time and
require complex software for analyzing output bits.

The semi-custom chips were tested by the manufacturer
using a set of test vectors created by a software simulation
of a single butterfly. The 4 metric inputs and outputs for
each butterfly inside these chips are wired directly to pins.
All 16 butterflies were tested in parallel, using the same
label, noisy symbols, and input metrics. However, it was
not certain, for reasons explained below, that the chips
could be connected as the ACS part of a Viterbi decoder.
Hence, the 32 butterflies in two semi-custom chips were
interconnected as shown in Fig. 3.

A software simulation was run for the two intercon-
nected chips. The program evolved from one used to gen-

177



erate test vectors for the gate arrays. Pseudo-random data
were sent through a (7,1/6) convolutional encoder and the
0/1 bits output were mapped to %21, which represent
quantized, demodulated channel symbols when there is no
channel noise. Then 8-bit quantized, zero-mean, white
Gaussian noise was added to these symbols. The noise
variance was set for a bit signal-to-noise ratio of 0 dB,
an extremely difficult operating point for a (7,1/6) Viterbi
decoder. Groups of 6 noisy symbols were processed by the
software simulator, and test vectors were generated. The
pair of semi-custom chips passed the test vectors (herein
called the zero-dB check) only after the test vectors were
modified as described below. Due to timing of signals at
chip pins, every state metric became hex 4000 instead of
0000 after reset. This anomaly does not affect traceback
bits, so it merely resulted in a simple change to the soft-
ware simulation. A few other problems found were com-
pensated for outside the chips. These small discrepancies
could not be exposed by the original set of test vectors,
but understanding the anomalies turned out to be crucial
during later BVD testing.

The zero-dB check demonstrated that two semi-custom
chips could work as the ACS part of a (7,1/6) Viterbi de-
coder. The results in [2] showed that 25 =% properly inter-
connected chips would form a (K,1/6) decoder, for K > 6.
These facts inspired confidence that 32 semi-custom chips
on a board could be tested as the ACS part of an (11,1/6)
decoder, and that 16 boards connected through a back-
plane would implement the ACS section of the (15,1/6)
BVD.

A batch of gate-array chips was tested at 25 MHz by the
manufacturer using test vectors generated by a simulation
like that used for the zero-dB check, except that extremely
noisy symbols (corresponding to Ejy /Ny near —8 dB) were
used to better exercise butterfly logic. Twenty chips that
passed tests were packaged as engineering prototypes. The
32 butterflies inside each of these gate arrays were then
connected using a test fixture with wires connecting chip
pins as the ACS part of a (7,1/6) Viterbi decoder. All
20 gate arrays passed the zero-dB check. As a result,
600 chips were ordered to build two prototype BV Ds, each
one with 256 gate arrays, 16 gate arrays on each of two
spare boards, and 12 spare chips. The zero-dB check was
also used to test individual boards, each with 16 gate ar-
rays, when the boards were wired using a special edge
connector as the ACS part of an (11,1/6) Viterbi decoder.

IV. Locating Bad Metric Wires (Connections)

During BVD debugging, procedures were needed to ver-
ify that VLSI chips already installed in the system were

178

still working, and that all connections between chips were
correct. Thus, a “traceback read” procedure was im-
plemented, based upon the zero-dB check, to match a
group of traceback bits written to the entire traceback
memory, against values computed during a software sim-
ulation. Also, new procedures were devised for locating
broken or missing metric wires (open circuits) and short-
circuited metric wires in the BVD. These tests (1) examine
traceback bits computed inside butterflies and stored in
memory, (2) were required to debug backplanes, and thus
(3) are now part of the BVD software. All of the above
tests start by resetting the decoder and then loading a
particular set of butterfly labels into the chips.

In the traceback read procedure, 510 sets of 6 symbols
are processed so that every traceback memory location is
written to and later read from. However, only the first
wrong traceback bit can be reported, even though state
metrics could be incorrect during decoder cycles prior to
the one for which the first wrong bit is computed. Also,
reading traceback memory cannot always be used to de-
termine which of the two metrics input to the butterfly, for
which a traceback bit error is reported, is incorrect. This
problem could be reduced by repeating the procedure us-
ing many different sets of symbols, which also helps to
detect intermittent faults. A traceback bit error could be
caused by one of the chips driving metric wires, by con-
nections between chips, or by the chip receiving the two
metrics (Fig. 2). Without a tester for chips, it is impossi-
ble to isolate the fault, so the receiving and then driving
chips are replaced in that order. If this does not solve the
problem, the connection between chips is suspected.

The procedures described next require that the VLSI
chips, memory chips, and interface circuitry on every
board operate perfectly. This is verified in the prototype
(16-board) BVD by testing each board independently as
an (11,1/6) decoder.

A. Detecting Open-Circuited/Grounded
Metric Wires

In the prototype BVD, or any subset of it wired as a
(K ,1/6) Viterbi decoder, if a metric wire is open-circuited
or grounded, the metric value will remain zero if the wire
floats low, which is usually the case because there is noth-
ing to drive the wire. This zero metric will propagate, with
branch metrics added, to all state metrics after X' — 1 sets
of 6 symbols are processed. The zero metric will continue
to corrupt every other state metric.

Detecting open-circuit metric wires is straightforward:
the label 010101 is loaded into each butterfly, the decoder
is reset, and six particular symbols are processed to force



every ACS unit to select the “horizontal” branch input.
Then for each state, a “traceback” bit is read from column
0 of the memory and an error reported when the bit differs
from the most significant bit of the state. In the case of
an error, a diagonal branch was chosen so the state having
a wrong traceback bit is reported, as well as the butterfly
input 0 or 1 which caused the error. A similar procedure
detects metric wires connected to power.!

B. Detecting Short-Circuited Metric Wires

When two or more metric wires are connected together,
the resulting signal has an intermediate voltage (between
0 and 5 volts) during arithmetic clock cycles in which the
metric values output by VLSI chips drive the line differ-
ently (recall that metrics are processed bit-serially). The
resulting metric value may be lower, equal to, or higher
than the correct value. However, when the wire is being
driven high and low by two different metric output drivers,
a logic low is usually interpreted by VLSI chip inputs. The
following example demonstrates a possible resulting metric
C when two state metrics, labelled A and B, are shorted
together:

A: 0100000111000101
B: 0100001001100011
C: 0100000011000101

While an open-circuit metric may be detected during
the first set of traceback reads, which occurs from column
0 of memory, shorts are detected only after the second set
of symbols has been processed because all metrics are the
same constant after reset, so all column 0 traceback bits
are correct if no wires are open and all circuitry works
properly. Hence, no errors must be reported during an
open-circuit metric test prior to running the short-circuit
test described below.

The algorithm described below locates with very high
probability all metric wires having multi-level signals, but
it cannot determine which wires are shorted together.
Consider the set of 64 groups of six symbols, formed by
taking a given group of 6 noisy symbols and inserting all 64
possible 6-bit vectors in place of the 6 sign bits. For each
group of 6 symbols in this set, the decoder is reset, 6 fixed

1 1. M. Onyszchuk, “Finding Open and Short-Circuited Metric Wires
in the BVD,” Interofice Memorandum 331-91.2-014 (internal
document), Jet Propulsion Laboratory, Pasadena, California,
March 18, 1991.

noisy symbols are processed, and then the group is sent to
the decoder. Every bit in column 1 of traceback memory
is read to determine which metrics are corrupted by shorts
(recall that column 0 is correct because the decoder passed
the open-circuit test). When an incorrect traceback bit is
read from memory, the butterfly input corresponding to
this bit is assumed shorted because a corrupted metric
usually has a lower value, so the decoder selects it instead
of the correct path. After all 64 iterations are complete,
one for each group of 6 symbols in the set of 64, the number
of errors found at each of the two metric inputs is reported
for every decoder state.

For all runs of this algorithm on the BVD hardware,
a multi-level signal has always been found on the metric
input for which the largest number of errors was reported
at a given state. In fact, one of the two metric inputs to
a state having wrong traceback bits nearly always had 0
errors reported. The 64 groups of symbols have the ef-
fect of creating all 64 possible sets of 4 branch metrics in-
side a butterfly for 6 given input symbols. These different
branch metrics help expose erroneous state metrics—sent
along wires between chips—by propagating errors to the
traceback bits, which are the only observables. Of course
there is no guarantee that the algorithm will expose ev-
ery short, but it has always worked in practice. In fact,
the algorithm located touching pins on the backplane and
in extender cards, caused by misalignment when boards
were installed. In order to increase the probability that
a short-circuited metric wire is detected, the above algo-
rithm could be repeated with one or more additional, com-
pletely different symbol sets and the errors accumulated
before final reporting.

V. Testing the Single-Board BVD

For implementation in DSN stations, the 16 boards
with 256 identical 32-butterfly gate arrays in the proto-
type BVD are being compacted into 64 identical new VLSI
chips to be mounted on a single backplane (Fig. 4). Each
new chip contains 128 butterflies, 65,536 bits of static
RAM for traceback, and circuitry for traceback, decod-
ing, and testing. These will be interconnected with 5120
wires on a single board. Key system design objectives
include automatic checking of all metric wires between
chips and testing chips individually, perhaps using on-chip
self-test circuitry not yet designed, while the chips are in-
stalled in the decoder. Due to the new VLSI chips, the
arithmetic core of the single-board BVD will be more re-
liable and about 4 times less expensive than the arith-
metic core in the current BVD prototype. Furthermore,
the maximum rate of the single-board BVD will be at least
1.5 million bits/sec, at a 20-MHz system clock.

179



Each of the new VLSI chips can operate as a com-
plete (9,1/6) Viterbi decoder. Test circuitry has been de-
signed to internally connect all 128 butterflies to form the
ACS section. Every cell in the traceback memory can be
checked individually. Thus, even while installed in the
BVD, each chip may be tested separately. Of course, on-
chip self-test circuitry, not currently part of the new chips,
would also enable such testing; each chip could be com-
manded using a special signal to test its internal circuitry
and memory, and then provide a pass/fail signal. Chip
self-testing has the advantage of verifying correct opera-
tion using only 2 signals. Testing a chip using external
symbols and signals requires perfectly working interface
circuitry. However, none of the input or output drivers
for metrics would be tested by either of these techniques.
The method suggested below will expose a bad driver by
using multiplexors inside ACS units in order to check met-
ric wires between chips.

Reading traceback memory is a difficult and time-
consuming operation in the current prototype BVD. Al-
though the tests have been successful and instrumental in
fault isolation, they are not foolproof and require manual
interpretation. Therefore, a better method is required to
test the decoder and to locate faults. Also, 160 of the 196
signal pins on the new VLSI chips are used for metric wires.
Thus, connecting a 16-bit parallel address bus to each chip
might eliminate pins needed for chip testing either by the
manufacturer or by the BVD software. In addition, there
may not be enough space on the single-board backplane
for address drivers and wires to all chip memories.

The suggestion outlined below has been made in or-
der to simply but thoroughly test every connection in the
single-board BVD. Recall that a connection in the decoder

consists of a VLSI chip metric output driver, the wire it
drives to another chip, and the corresponding input driver
on the other chip. There are 5120 such connections in
the single-board BVD. By placing a two-input multiplexor
at the input to each one of the four 12-bit state-metric
registers in each butterfly, the registers may be chained
together during a test mode. The four multiplexors to-
gether require only about the same number of transistors
as one of the 10 full-adders or one of the 60 flip-flops in
a butterfly. The test mode could be used to check metric
wires between chips after all chips have been successfully
tested. Using the above multiplexors, a bit pattern may be
loaded serially into state metric registers. If the decoder
then processes 6 all-zero symbols, the pattern will be sent
along metric wires between chips and into butterflies. The
contents of all state-metric registers may then be read out
bit-serially and used to identify bad metric wires directly.
Traceback read operations are avoided, thereby reducing
circuitry on the board, software, chip pins, and wiring of
memory addresses to all VLSI chips.

Naturally, a progressive testing method for the decoder
should be used in which successive tests depend upon the
decoder’s passing all previous tests. The datapath for sym-
bols should be checked first. Then simple checks could be
run on one chip to verify that control signals are working.
Next, each chip, including the internal traceback memory,
would be tested individually. This might be accomplished
by using on-chip self-test circuitry. Each chip could be ver-
ified as a complete (9,1/6) Viterbi decoder. Then metric
wires between chips could be checked using the procedure
described above. Finally, the entire single-board decoder
would be tested by comparing measured bit error rates
for various noise levels against precomputed values from
software simulations [3].

References

(1] J. Statman, G. Zimmerman, F. Pollara, and O. Collins, “A Long Constraint
Length VLSI Viterbi Decoder for the DSN,” TDA Progress Report 42-95,
vol. July-September 1988, Jet Propulsion Laboratory, Pasadena, California,

pp- 134-142, November 15, 1988.

[2] O. Collins, F. Pollara, S. Dolinar, and J. Statman, “Wiring Viterbi Decoders
(Splitting deBruijn Graphs),” TDA Progress Report 42-96, vol. October-
December 1988, Jet Propulsion Laboratory, Pasadena, California, pp. 93-103,

February 15, 1989.

[3] I. M. Onyszchuk, “Coding Gains and Error Rates from the Big Viterbi Decoder,”
TDA Progress Report 42-106, vol. April-June 1991, Jet Propulsion Laboratory,
Pasadena, California, pp. 170-174, August 15, 1991.

180



STATE

COLUMN
169 339 509

0 1
1 —
2] |
: DECODE TRACEBACK

e

o
| ¥ 4

CHIP

ACS
(STATE)

io BUTTERFLY/ 0i

MACEBACK BITS

Fig. 1. Viterbi decoder traceback memory.

CHIP

METRIC WIRES
(CONNECTIONS)

Fig. 2. Uncertainty of error location.

BUTTERFLY n

Fig. 3. Thirty-two butterflies connected to form the Add-Compare-Select (ACS) section of a

constraint-length 7 Viterbi decoder.

181




- 16.5in.

20.5 in
e}
(o]
b4
—{
)
]
—
22}
(9]
z
>
—
]
2
<
m
)
»

Fig. 4. A possible layout for the single-board Big Viterbi Decoder.

182



